Chapter 2

The Chemical Context of Life

Lectures by Erin Barley Kathleen Fitzpatrick

Concept 2.1: Matter consists of chemical elements in pure form and in combinations called compounds

- Organisms are composed of **matter**
- Matter is anything that takes up space and has mass

Elements and Compounds

- Matter is made up of elements
- An element is a substance that cannot be broken down to other substances by chemical reactions
- A compound is a substance consisting of two or more elements in a fixed ratio
- A compound has characteristics different from those of its elements

Figure 2.3

Figure 2.3a

Figure 2.3b

Figure 2.3c

The Elements of Life

- About 20–25% of the 92 elements are essential to life
- Carbon, hydrogen, oxygen, and nitrogen make up 96% of living matter
- Most of the remaining 4% consists of calcium, phosphorus, potassium, and sulfur
- **Trace elements** are those required by an organism in minute quantities

Table 2.1

Table 2.1 Elements in the Human Body			
Element	Symbol	Percentage of Body Mass (including water)	
Oxygen	0	65.0%)
Carbon	С	18.5%	96 306
Hydrogen	Н	9.5%	90.3%
Nitrogen	Ν	3.3%)
Calcium	Ca	1.5%)
Phosphorus	Р	1.0%	
Potassium	К	0.4%	
Sulfur	S	0.3%	3.7%
Sodium	Na	0.2%	
Chlorine	Cl	0.2%	
Magnesium	Mg	0.1%	/
Trace elements (less than 0.01% of mass): Boron (B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), zinc (Zn)			

Concept 2.2: An element's properties depend on the structure of its atoms

- Each element consists of unique atoms
- An atom is the smallest unit of matter that still retains the properties of an element

Subatomic Particles

- Atoms are composed of subatomic particles
- Relevant subatomic particles include
 - Neutrons (no electrical charge)
 - **Protons** (positive charge)
 - Electrons (negative charge)

- Neutrons and protons form the atomic nucleus
- Electrons form a cloud around the nucleus
- Neutron mass and proton mass are almost identical and are measured in daltons

Atomic Number and Atomic Mass

- Atoms of the various elements differ in number of subatomic particles
- An element's atomic number is the number of protons in its nucleus
- An element's mass number is the sum of protons plus neutrons in the nucleus
- Atomic mass, the atom's total mass, can be approximated by the mass number

Isotopes

- All atoms of an element have the same number of protons but may differ in number of neutrons
- Isotopes are two atoms of an element that differ in number of neutrons
- Radioactive isotopes decay spontaneously, giving off particles and energy

- Some applications of radioactive isotopes in biological research are
 - Dating fossils
 - Tracing atoms through metabolic processes
 - Diagnosing medical disorders

TECHNIQUE

3 The test tubes are placed in a scintillation counter.

RESULTS

Figure 2.7

© 2011 Pearson Education, Inc.

The Energy Levels of Electrons

- Energy is the capacity to cause change
- **Potential energy** is the energy that matter has because of its location or structure
- The electrons of an atom differ in their amounts of potential energy
- An electron's state of potential energy is called its energy level, or electron shell

Figure 2.8

(a) A ball bouncing down a flight of stairs provides an analogy for energy levels of electrons.

Electron Distribution and Chemical Properties

- The chemical behavior of an atom is determined by the distribution of electrons in electron shells
- The periodic table of the elements shows the electron distribution for each element

- Valence electrons are those in the outermost shell, or valence shell
- The chemical behavior of an atom is mostly determined by the valence electrons
- Elements with a full valence shell are chemically inert

Electron Orbitals

- An **orbital** is the three-dimensional space where an electron is found 90% of the time
- Each electron shell consists of a specific number of orbitals

Figure 2.10

(a) Electron distribution diagram

(b) Separate electron orbitals

(a) Electron distribution diagram

(b) Separate electron orbitals

Figure 2.10c

(c) Superimposed electron orbitals

Concept 2.3: The formation and function of molecules depend on chemical bonding between atoms

- Atoms with incomplete valence shells can share or transfer valence electrons with certain other atoms
- These interactions usually result in atoms staying close together, held by attractions called chemical bonds

Covalent Bonds

- A covalent bond is the sharing of a pair of valence electrons by two atoms
- In a covalent bond, the shared electrons count as part of each atom's valence shell

Figure 2.11-1

- A molecule consists of two or more atoms held together by covalent bonds
- A single covalent bond, or **single bond**, is the sharing of one pair of valence electrons
- A double covalent bond, or **double bond**, is the sharing of two pairs of valence electrons
- The notation used to represent atoms and bonding is called a structural formula

 For example, H—H
- This can be abbreviated further with a molecular formula
 - For example, H_2

Figure 2.12

Name and Molecular Formula	Electron Distribution Diagram	Lewis Dot Structure and Structural Formula	Space- Filling Model
(a) Hydrogen (H ₂)	(H) (H)	Н: Н Н—Н	
(b) Oxygen (O ₂)		ö∷ö o=o	
(c) Water (H ₂ O)		:Ö:Н Н О—Н Н	
(d) Methane (CH₄)	H C H	H:C:H H H H H H H H	

- Covalent bonds can form between atoms of the same element or atoms of different elements
- A compound is a combination of two or more different elements
- Bonding capacity is called the atom's valence

- Atoms in a molecule attract electrons to varying degrees
- Electronegativity is an atom's attraction for the electrons in a covalent bond
- The more electronegative an atom, the more strongly it pulls shared electrons toward itself

- In a nonpolar covalent bond, the atoms share the electron equally
- In a polar covalent bond, one atom is more electronegative, and the atoms do not share the electron equally
- Unequal sharing of electrons causes a partial positive or negative charge for each atom or molecule

Figure 2.13

Ionic Bonds

- Atoms sometimes strip electrons from their bonding partners
- An example is the transfer of an electron from sodium to chlorine
- After the transfer of an electron, both atoms have charges
- A charged atom (or molecule) is called an **ion**

- A cation is a positively charged ion
- An **anion** is a negatively charged ion
- An ionic bond is an attraction between an anion and a cation

- Compounds formed by ionic bonds are called ionic compounds, or salts
- Salts, such as sodium chloride (table salt), are often found in nature as crystals

Figure 2.15

© 2011 Pearson Education, Inc.

Figure 2.15

Weak Chemical Bonds

- Most of the strongest bonds in organisms are covalent bonds that form a cell's molecules
- Weak chemical bonds, such as ionic bonds and hydrogen bonds, are also important
- Weak chemical bonds reinforce shapes of large molecules and help molecules adhere to each other

Hydrogen Bonds

- A hydrogen bond forms when a hydrogen atom covalently bonded to one electronegative atom is also attracted to another electronegative atom
- In living cells, the electronegative partners are usually oxygen or nitrogen atoms

Van der Waals Interactions

- If electrons are distributed asymmetrically in molecules or atoms, they can result in "hot spots" of positive or negative charge
- Van der Waals interactions are attractions between molecules that are close together as a result of these charges

 Collectively, such interactions can be strong, as between molecules of a gecko's toe hairs and a wall surface Figure 2.UN01

Molecular Shape and Function

- A molecule's shape is usually very important to its function
- A molecule's shape is determined by the positions of its atoms' valence orbitals
- In a covalent bond, the s and p orbitals may hybridize, creating specific molecular shapes

(b) Molecular-shape models

- Biological molecules recognize and interact with each other with a specificity based on molecular shape
- Molecules with similar shapes can have similar biological effects

(a) Structures of endorphin and morphine

(b) Binding to endorphin receptors

(a) Structures of endorphin and morphine

(b) Binding to endorphin receptors

Concept 2.4: Chemical reactions make and break chemical bonds

- Chemical reactions are the making and breaking of chemical bonds
- The starting molecules of a chemical reaction are called **reactants**
- The final molecules of a chemical reaction are called **products**

Figure 2.UN02

- Photosynthesis is an important chemical reaction
- Sunlight powers the conversion of carbon dioxide and water to glucose and oxygen
 6 CO₂ + 6 H₂0 → C₆H₁₂O₆ + 6 O₂

- All chemical reactions are reversible: products of the forward reaction become reactants for the reverse reaction
- **Chemical equilibrium** is reached when the forward and reverse reaction rates are equal

Figure 2.UN12